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A systematic study is made of the effect of latitude on the linear, normal mode 
stability characteristics of the laminar barotropic Ekman- layer. The outcome 
depends upon the direction of the geostrophic flow (in the case of flows modelling the 
atmospheric Ekman layer) or, alternatively, upon the direction of the applied stress 
(in the case of flows modelling the oceanic Ekman layer). The minimum critical 
Reynolds number R, is a function of latitude. For the atmospheric Ekman layer 
Rc = 30.8 for all latitudes less than 26.2" and increases monotonically with latitude 
to 54.2. At a latitude of 45" N, Rc is 33.9 and arises for a geostrophic wind directed 
towards a compass heading 252' (clockwise from north), corresponding to rolls with 
axes pointing due west and having wavenumber k (with unit of length taken to be 
the Ekman layer depth) of 0.594. The minimum R, for the oceanic boundary layer 
is 11.6 for latitudes less than 81.1', and increases with latitude to 11.8. At 45" N 
latitude, the critical condition arises for a surface-current compass heading of 3 4 5 2 ,  
roll axis of 351O and a wavenumber k = 0.33. The results for R, are all symmetric 
about the equator, with roll axes and associated basic flow directions rotated by 180". 
As the Reynolds number R increases, the effects of the perturbation' Coriolis 
acceleration on the instability diminish, as has been previously shown, and the error 
caused by neglect of the horizontal component of angular velocity therefore decreases. 
The high Reynolds number limit is systematically explored. It is shown that the 
lower branch of the neutral curve is not inviscid as R+co ; rather kR+constant. The 
upper branch is inviscid in the limit R+m, and corresponds to a regular or singular 
neutral mode depending on whether the angle E between the outer geostrophic flow 
and the roll axis is greater or less than 15.93'. 'Inflectional' modes, thought to be 
relevant by some investigators, do not exist for E < 15.93'. Lastly, the most unstable 
inviscid mode corresponding to zero phase speed, a condition to which certain 
well-known experiments are sensitive, occurs at E = 11.8' with wavenumber k = 0.6. 
This is in good agreement with published experimental data. 

1. Introduction 
The classical steady Ekman layer (originating with Ekman 1905) is a motion 

everywhere parallel to a plane; in it, deviations from a state of rigid rotation exist 
with Coriolis accelerations and pressure gradients balanced by viscous forces. The 
Coriolis accelerations that enter are those associated with Q,, the component of the 
angular velocity of the reference frame that is normal to the planes of motion. In 
the geophysical context, the motion is interpreted as a local one, the defining plane 
being that tangent to the planet's surface at the latitude h of interest, the curvature 
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of the planet surface being neglected. If the angular speed of rotation about the 
planetary axis is Q, then $2, = 52 sin A ; there is in addition a component of the angu- 
lar velocity, Q, = $2 cosh, parallel to the tangent plane. The neglect of the parallel 
component is accepted as an approximation when the vertical thickness of the 
fluid layer is much smaller than the horizontal lengthscales of the motion (thereby 
causing vertical speeds in such flows to be much smaller than horizontal speeds). The 
Ekman layer solution then arises in the limit of zero Rossby number. The solution 
alternatively may be viewed as the exact solution of the Navier-Stokes equations 
in a rotating half-space, constrained to be a function only of vertical distance from 
a surface plane, even allowing for a horizontal component of a. Furthermore, in 
laboratory ‘dishpan’ experiments (Faller 1963; Faller & Kaylor 1 9 6 6 ~ ;  Tatro & 
Mollo-Christensen 1967; Caldwell & Van Atta  1970; Weidman 1976) designed to 
investigate the Ekman layer, and in particular its stability, there is no horizontal 
component of angular velocity. 

When considering the instability of the Ekman layer, the horizontal component 
of a, QH, assuming i t  is non-zero, cannot be neglected, although this has been done 
in nearly all of the previous theoretical work on the problem (Stern 1960; Faller & 
Kaylor 1966a, b, 1967; Lilly 1966; Barcilon 1965; Brown 1970,1972; Kaylor & Faller 
1972; Asai & Nakasuji 1971 ; Iooss, Nielsen & True 1978; Nielsen & True 1979; Weber 
1980; Melander 1983; Spooner 1983; Spooner & Criminale 1982). We will call such 
treatments the ‘traditional problem’ of Ekman layer Stability.? Vertical and 
horizontal perturbation speeds are comparable, and consequently the horizontal 
component of the angular velocity of the reference frame is activated in the stability 
problem, although i t  does not enter into the basic Ekman layer velocity field. Thus 
the previous analyses of the instability of the Ekman layer over a no-slip rigid surface 
(modelling the atmospheric Ekman layer - we refer to this model as the ‘atmospheric ’ 
case) and the Ekman layer with a free surface having a prescribed surface stress 
(modelling the oceanic Ekman layer, and which we call the ‘oceanic’ case; see Spooner 
1983; Faller & Kaylor 1967; Iooss et al. 1978) are generally incorrect (more or less 
depending on latitude) when applied to geophysical problems. Wippermann (1969) 
first pointed out the possible importance of the horizontal component of angular 
velocity to the stability of the atmospheric Ekman layer; further work by Etling 
(1971) confirmed i t  for both stratified and homogeneous atmospheres at a latitude 
of 45” N, and, for this latitude, Etling showed that the most-unstable perturbations 
take the form of rolls oriented due west. Additional investigations by Etling & 
Wippermann (1975) and Wipperman, Etling & Kirstein (1978) incorporate the 
findings of Etling (1971) - by including the horizontal angular velocity, restricting 
attention to the particular case of 45O N and rolls due west - in studies devoted to 
the effects of stratification and turbulence on stability of the atmospheric Ekman 
layer. This demonstration by Wippermann and Etling of the importance of the 
horizontal component of angular velocity is not properly recognized in the literature. 
Their work was brought to our attention by Professor A. J. Faller, to whom we are 
grateful, after a draft of this paper was submitted for publication. 

The geophysical problem depends mainly on three ingredients : turbulent transport 
of momentum and buoyancy, buoyant force due to density stratification, and Coriolis 
force. In addition to the work of Wippermann & Etling, stratification effects have 
been considered, for the atmospheric case under the traditional approximation, by 
Faller & Kaylor (1972a, b ) ,  Brown (1972) and Asai & Nakasuji (1973), assuming 

t Professor J.  W. Miles has pointed out to us that Eckart (1960, p. 96) referred to the neglect 
of 52, as the ‘traditional approximation’. 
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quasi-laminar (constant eddy viscosity) flow. Spooner (1983) includes stratification 
through a two-layer model of the oceanic problem, also under the traditional 
approximation. The complete problem, including proper treatment of the three 
dominant effects, is not tractable. We confine attention here to  barotropic laminar 
or quasi-laminar flows, and aim a t  a complete and systematic exploration of the effects 
of latitude on stability of both the ‘atmospheric’ and ‘oceanic’ cases engendered by 
both components of angular velocity. Other effects, although acknowledged to be 
important, are ignored henceforth. 

The Coriolis acceleration enters into the Ekman layer stability problem in two 
ways, which we may call indirect and direct. First, the Coriolis acceleration associated 
with 52, controls the basic (unperturbed and horizontal) Ekman-layer flow. Thus 
perturbations about this state are influenced by the Coriolis acceleration indirectly, 
through the form of the basic Ekman flow profiles. Secondly, disturbances to the 
basic state are dynamically influenced directly through the perturbation Coriolis 
acceleration, containing contributions from both the vertical and horizontal com- 
ponents of the angular velocity. If one completely ignores the perturbation Coriolis 
accelerations, the problem for normal modes reduces to  an Orr-Sommerfeld equation. 
Lilly (1966) examined the stability of the atmospheric Ekman layer model based 
upon this approximation as well as the traditional problem. He found a critical value 
of R,  R,, of about 93 when perturbation Coriolis accelerations were neglected, and 
about 55 for the traditional problem. The latter value has been found more accurately 
by Iooss et al. (1978) and Melander (1983) to  be 54.2, and this is the correct value 
of R, at A = 90”. I n  the present work we find R, to be reduced further for the 
atmospheric Ekman layer, to 30.8 for latitude of 26.2” and less, when the full 
perturbation Coriolis acceleration is included (we refer to this as the ‘full ’ problem). 
As A+O the Ekman layer is degenerate, since its limiting depth is infinite, 
furthermore, the (singular) limiting stability problem has no solution. 

Dudis & Davis (1971) predict an energy-stability limit RE x 18.3 for the Ekman 
layer with rigid surface. Since the energy-stability analysis does not depend on the 
direct effects of Coriolis acceleration, it still stands. The present results therefore 
reduce the gap between the global and linear stability limits for the atmospheric 
Ekman layer. 

The traditional Ekman layer stability problem depends upon E ,  the angle between 
the geostrophic wind and the roll axis (alternatively, the constant phase surfaces of’ 
the normal-mode perturbation) ; R ,  the Reynolds number based upon the geostrophic 
speed and the Ekman layer depth D = (v/52,)*; and the wavenumber k of the normal 
mode. To this list one must add ,u = -cotA cosp, where /3 is the counterclockwise 
angle made by the roll axis measured from due east, when dealing with the full 
problem. The full problem and the traditional problem both require the solution of 
similar sixth-order differential systems in which Coriolis terms are O(  R-l)  compared 
with inertial terms. As R+co therefore, both full and traditional problems are 
identical. For fixed values of E (which enters through the basic state), the neutral- 
stability curve has two branches, as is familiar in parallel-flow stability problems. 

I n  the atmospheric case, slightly supercritical Reynolds numbers correspond to 
travelling waves, sometimes called the ‘type I1 ’ mode of instability in experimental 
work on the problem (for the traditional problem see Faller & Kaylor 1966a, 6 ;  Lilly 
1966; Greenspan 1968). The phase fronts are oriented a t  angles of about 20” to the 
right of the geostrophic flow direction. A second mode of instability, ‘type I ’, appears 
a t  a Reynolds number on the order of 100, with very much smaller phase speeds and 
larger wavenumbers. Type I disturbances have phase fronts (roll axes) aligned more 
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closely to  the geostrophic-flow direction and to  the left of i t  (in the northern 
hemisphere). The two types of disturbances coexist for a range of Reynolds number 
in the sense that there are two local maxima of growth rate in the ( k ,  €)-plane, with 
the type I1 ultimately disappearing a t  Reynolds numbers in the range 150-200. This 
process is nicely illustrated by Melander (1983, figure 4). The type I1 mode has been 
called the 'parallel instability ' and the type I mode 'inviscid' or 'inflectional' in some 
theoretical work. The qualitative behaviour found here for the full problem is similar, 
except that the critical Reynolds number is smaller, the band of unstable modes at 
slightly supercritical conditions is much wider, and, for sufficiently large p, only one 
maximum of growth rate exists in the (k, +plane for moderate Reynolds numbers. 

Numerical treatments of the traditional stability problem for the oceanic case 
(Iooss et al. 1979; Spooner 1983) reveal the development of two instability modes for 
a range of supercritical Reynolds numbers. I n  contrast with the traditional 
atmospheric problem, these two unstable modes can be traced in wavenumber, as 
there are bands of wavenumbers for which these modes are distinct eigenvalues for 
the same values of k ,  R and E .  The qualitative behaviour of the full problem is again 
similar. In  this case, the critical Reynolds number is only slightly lower for the full 
problem, but growth rates of marginally unstable modes are much larger, and the 
band of excited wavelengths is much wider, than for the traditional problem. 

Barcilon (1967) has considered the asymptotic limit kR-tco, considering only 
neutral modes. His analysis is based upon two crucial approximations that he realized 
were questionable (retention of only one term of a Heisenberg expansion in k2,  and 
the application of the boundary condition for z+m by z = n); unfortunately both 
approximations are seriously inadequate. The limit kR+m is governed by the 
Rayleigh equation, where the velocity component that  enters is that  parallel to the 
perturbation wavenumber vector. This component is not monotonic, and has an 
infinite number of inflection points. The numerical evidence from our solutions of the 
Rayleigh equation, confirmed by solutions of the viscous problem that we have 
obtained for R up to  32000, suggests that  there are a number of unstable modes in 
the limit kR+m and we conjecture that there are, in fact, an infinite number of such 
modes for each angle E exhibiting instabilities. For E 2 15.93' a regular neutral mode 
is associated with the inflection point closest to the surface, but there are additional 
unstable modes contiguous to singular neutral modes. For E < 15.93' no regular 
neutral modes exist; all neutral modes are singular. Since there are many (perhaps 
infinitely many) unstable modes, each having a (singular) neutral mode, the location 
of the asymptote of the upper branch of the neutral curve as R+m is an open 
question. I n  addition, we compute the unstable modes and the linearly most unstable 
mode for various E .  We find that the most unstable mode having zero phase speed 
corresponds to roll angle E = 11.8', and wavenumber k = 0.6 corresponding to a 
wavelength of L = 10.50, where 0 is the Ekman-layer depth. This is in better 
agreement with experimental data than the regular neutral modes to which this, 
Faller's type I disturbance, has been compared (Faller 1963). Thus Faller finds 
experimentally that L = 10.90, and c = 14.5"f2", while we show that the regular 
neutral mode having zero phase speed has wavelength L = 4.550. 

The asymptotic behaviour, as R+m, of the lower branch of the neutral curve 
displays an uncommon feature for a wall-bounded shear flow. We find that as R+m, 
kR+constant (depending on E ) ;  this limiting case as R+co is an infinitely long 
disturbance dominated by viscosity. This asymptotic behaviour on the lower branch 
has not been recognized before in the context of Ekman layer stability, but has been 
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found in the (mathematically) related problem of the ' buoyancy boundary layer ' 
(BBL) by Gill & Davey (1969). 

It is of interest and importance to us that the stability problem for the BBL for 
unit Prandtl number coincides with the traditional Ekman layer problem for E = 0, 
as was noted by Gill & Davey in their treatment of the BBL. Their analysis, 
particularly in the asymptotic limit R+m, provides us with accurate solutions which 
we have used to check the numerical method we employ in the inviscid limit. Gill 
& Davey use a shooting method, while we use a combination of shooting and matrix 
(Galerkin) methods. This allows us to identify additional modes of instability missed 
by Gill and Davey. 

Our problem and methods of solution are described in $2. Our results for finite 
Reynolds numbers are described in $3, for both the atmospheric and oceanic models. 
Solutions for the limit R+oo are reported in $4. Section 5 covers an analysis of the 
energetics of the instability. Concluding remarks are placed in $6, and a discussion 
of numerical issues is given in the Appendix, including the identification of failures 
of matrix methods when applied to (nearly) singular problems. 

2. Problem formulation and methods of solution 
We adopt a right-handed Cartesian coordinate system (X, Y, z )  with plane z = 0 

tangent to the earth at latitude A and rotating with it. Lengths are assumed to be di- 
mensionless, with unit of length taken to be the Ekman layer depth D = (v/a lsin A1 )i, 
where Q is the rotational speed of the earth about its axis. For simplicity, we will 
assume motion in the northern hemisphere only (so h > 0). Let X increase to the east 
and Y to the north, then z is directed vertically and we let ex ,  ey,  e, be the 
corresponding unit vectors. The angular-velocity vector of the rotating frame is 

a = SZ(cosh e,+sinh e,). 

Choosing a velocity U, (to be specified subsequently) as unit of velocity, D / U ,  as unit 
of time, and neglecting the curvature of the earth, the dimensionless equations of 
motion may be written (see e.g. Holton 1979) as 

u,+~.Vu+R-~[2(2i( coth-d)e,+2.iiey-2.ii coth e,-V2u]+Vp = 0, 

v - u  = 0, 

where p is a modified pressure, including the gravitational potential and the 
centrifugal acceleration of the reference frame, and made dimensionless by reference 
to pU:. In ( 1 )  the Reynolds number R is based on U,, and D,  and the velocity vector 
in the (X, Y ,  z )  frame is (6,6,$). 

2.1. Basic Ekman flow : atmospheric model 

Here the motion takes place in the half-space z > 0, and we assume that u = 0 on 
a rigid plane z = 0. If the velocity field is independent oft, X and Y then continuity 
requires 2i( = 0. We assume that the flow is geostrophic as z +a, with velocity vector 
oriented at  an angle a (measured in the usual counterclockwise sense) to  the X-axis, 
or 

U + ( C O S ~  e,+sina ey) 

as z +m ; thus the velocity scale U, chosen to render the problem dimensionless is 
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the geostrophic speed. The corresponding (modified, dimensionless) pressure field 
balancing the Coriolis acceleration is 

2 .  
R 

p = -(sin& X-cosa Y+cosa cothz)+constant. 

The Ekman layer then has the velocity vector 

u = O(z) ex + P(z) e y ,  

where I O(z) = cosa-e-Z cos (z-a) ,  

P(z) = sin a + e-z sin ( z  - a). 
(3) 

Since, by hypothesis, there is no vertical motion, the horizontal angular veloCity 
appears only in the vertical force balance, thereby modifying the pressure, which is 
given by 

2 
R 

p = -[sina X-cosa Y+coth{cosa z + ! j ~ ~ ( c o s  (z-ad)-sin(z-a)}]+constant. 

2.2. Basic Ekman flow: oceanic case 

The fluid in this case is confined to the half-space z < 0, and a stress is applied to  
the plane z = 0 a t  an angle a+ax to the X-axis. As z+-m it is assumed that u-+O. 

For this case the Ekman layer has velocity vector (2) with components 

O(z) = ez cos ( z  + a), 
P(z) = ez sin ( z  + a). (4) 

If the applied stress is written as pu;, where u* is the friction velocity, then the 
velocity scale U,  implied by (4) and used to make the problem dimensionless is 

U, = u2,/(2vSZlsinhl)i. 

Associated with (4) is the (modified) pressure field 

cot h 
R 

p = -ez[cos (z+a)+sin(z+a)]+constant. 

2.3. Perturbation equations : the eigenvalue problem 

We intend to attack the stability problem by a normal mode analysis, with 
perturbation quantities having X-, Y-dependence in the form exp i(K1 X+ K~ Y). As 
observed by Lilly (1966), the resulting eigenvalue problem may be simplified by 
rotation of coordinates. We therefore first rotate about the z-axis through an angle 
/3 to a new (2, y, 2)-coordinate system, as shown in figure 1, and assume that all 
perturbations are independent of x. Normal modes will then be in the form expiky, 
where K~ = - k sinp, K~ = k cosp and, since we allow /3 to vary, we may take k > 0 
without loss of generality. Velocity componcnts with respect to  the rotated coordinates 
are written without the circumflex. In this reference frame, ( l ) ,  linearized about the 
relevant Ekman layer flow, are 

u,+ Vv,+wU'+Vp = R-'{V2v-2(w coth cos/3-v)eZ+2(w coth sinp-u)e, 

+2(u coth cosp-v coth sinP)e,}, 

v-v = 0, 
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Y (north) 

47 

FIQURE 1.  The coordinate system used in the present study. X-axis points due east and x-axis points 
in the direction of the rolls (wave crests). V, is the direction of the geostrophic flow for the 
atmospheric problem. V, is the direction of the surface current for the oceanic problem. 

where (ex,  ey,  e,) are the unit vectors in the (2, y, %)-system, v is the perturbation 
velocity vector v = ue, + vey + wez, and U = Ue, + Vey is the basic Ekman-layer 
velocity vector. We have assumed in ( 5 )  that v and p are independent of x, and a 
prime represents differentiation with respect to z. 

In the rotated coordinate system the atmospheric. Ekman layer velocity vector U 
has components 

I U = cose-e-z cos(z+e), 

V = -sinE+e-, sin(z+e), 

where €=@-a (7)  

is the angle of the rolls measured from the direction of the geostrophic flow. Similarly, 
the model oceanic Ekman layer has velocity components 

U = ez cos ( Z - e ) ,  

V = ez sin ( z - E ) ,  

where E is the angle of the rolls measured from the direction of the surface velocity. 
Under the assumptions we have made, we may introduce a perturbation stream 

function 11- such that 

and assume normal modes, with 
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(V-c) ($"-k2$)- V"$ = (ikR)-l[$'"-22k2$"+k4$+2(-ikpx+x')], ( l l a )  

( V -  c) x + U'$ = (ikR)-' [x" - k2x - 2( - ikp$ + $')I, (1lb) 

where p = -coth cosp. (12) 

$ = $ ' = x = O  a t z = O ,  (13a) 

( $ , $ " , x ' ) + O  asz+co. (13b)  

Boundary conditions on perturbations for the atmospheric Ekman layer are no slip, 

and vanishing normal velocity and shear stress as z - t c o ,  

For the oceanic case Spooner (1983) has shown that deflection of the free surface may 
be ignored. Thus conditions of zero normal velocity and vanishing shear stress are 
assumed at z = 0:  

$ ( O )  = $"(O) = x'(0) = 0 (14a) 

and ( $ , $ ' , x ' ) + O  asz+-co. (14b) 

If x did not appear, (1 1 a )  would be the Orr-Sommerfeld equation, as if the flow 
were rectilinear with profile V ( z )  ; this connection has been explored by Barcilon (1 965) 
and Lilly (1966). 

The problems for (11)  subject to either (13) or (14) are regarded as eigenvalue 
problems with eigenvalue 

c(k; E ;  R ;  p ) .  (15) 

On writing c = c,+ici, 

instability arises if ci > 0 for any physically accessible point in the (k, 8,  R, p)-space. 
For h fixed, variation of p corresponds to variation of p, and the joint variation of 
k and p is equivalent to the variation of the wavenumber vector (magnitude and 
direction in the horizontal plane) of the perturbation. 

Calculations at  finite values of kR are carried out with a matrix method employing 
Galerkin expansions in Chebyshev polynomials. Numerical details, including assess- 
ments of accuracy of computed eigenvalues, are given in the Appendix. Since we use 
a matrix method, we are able to compute an approximation to a sizeable number 
of eigenvalues, and to determine in this way if more than one unstable mode exists. 

2.4. The inviscid limit 
As R+m for fixed k and p, the equations (11) approach the Rayleigh equation 

(V-C) ($"-k2$)- V"$ = 0. (16) 

In this case, the viscous boundary conditions (either no-slip or no-stress) at z = 0 must 
be dropped. Further, since V" + O  exponentially fast for both atmospheric and oceanic 
cases, $ - exp ( -k l z l )  as 121 +a, and so both atmospheric and oceanic cases satisfy 
the boundary conditions 

$ ( O )  = 0, $ + O  as IzI+co, (17) 

and differ only in the form of V.  By a simple transformation, both problems can be 
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reduced to that of the atmospheric case. Thus temporarily writing V,, and Vat, for 
(7) and (6) respectively, we have 

V,, = -e-(sin(c+e), (18) 

where 5 = -2. Setting E = C+x,  c = sinC+&, (19a, b )  

the oceanic problem for c given E is reduced to the atmospheric problem for E given 
C. Now, however, the phase speed in the oceanic case is 

e, = -sine+&,. (20) 

(21 1 
Another transformation between the oceanic and atmospheric problems is possible, 

and i t  leads to a fundamental symmetry in the eigenvalues of the Rayleigh equation 
for these problems. This second transformation also starts from (18), but replaces (19) 
simply by 

This also reduces the oceanic problem for c given e and k to the atmospheric problem 
for E given e and k.  But now (21) and (22) must agree, which shows that 

Thus we need solve only the atmospheric case for 2, the oceanic case having 

c,,(k, E )  = -sin e + E,( k,  E -  x )  + iE,(k, E - x ) .  

c =-(sine+@. (22) 

E(k, E )  = -E(k, e - 7 ~ ) .  (23 1 
Since eigenvalues of the Rayleigh equation arise as complex-conjugate pairs, the rule 
(23) shows that, to an unstable mode with given e and k ,  there corresponds an unstable 
mode with the same growth rate and wavenumber, but with the negative of the phase 
speed, at E - x .  Thus 

and the exploration of a x-interval of e establishes results for all possible E .  We have 
confirmed (24) by computing e for E = 20" and for E = 200" at a given k.  

The Rayleigh equation, as is well known, is singular for neutral modes which are 
the limit of unstable modes. Matrix methods are satisfactory when dealing with 
problems such as these, provided the growth rate is large enough to assure that I V-cl 
is not small; a brief discussion can be found in Leibovich & Stewartson (1983). When 
I V-cl is small in 0 < z < 00 matrix methods fail badly. The errors not only are 
uncontrolled but there need be no obvious problem with them; that is, an apparent 
convergence of solutions as the size of the approximation (number of Galerkin basis 
functions) is increased can be illusory. Growth of the error is detectable, however, 
by the difference between the eigenvalues computed from the direct and the adjoint 
problem. We discuss the numerical difficulty encountered with our Galerkin solutions 
for the Rayleigh equation in the Appendix. 

To avoid this problem, we switch to a shooting method for most of our calculations 
of solutions of the Rayleigh equation, numerically deforming the contour of integration 
in the (complex) z-plane to avoid the singularity existing at  V = c .  Our procedure 
is similar to that of Gill & Davey (1969) and of Leibovich & Stewartson (1983); the 
path of integration is deformed to pass below the real axis if V'(z,) > 0, where z, is 
a real value of z at which V(z,) = c,, and above the real axis if V'(z,) < 0. Details 
of this procedure and of our other numerical schemes are given in the Appendix. 



S. Leibovich and 8. K .  Lele 

3. Onset of instability 
This section is concerned with the determination of conditions for the onset of 

instability and the characteristics of instabilities affected by viscosity. It is divided 
into two main parts: the first part concerns the atmospheric Ekman layer, and the 
second part the oceanic Ekman layer. Critical values for linear instability are given 
for each case as a function of latitude. 

Detailed instability results are given for A = 45', this being thought sufficient to 
establish the effects of latitude. Contour maps of growth rate as a function of 
wavenumber k and the angle B of the rolls from the geostrophic or surface velocity are 
presented at certain sequences of R and p. Cross-plots are also presented, giving the 
maximum growth rate versus Reynolds number, thus identifying the linearly 
most-unstable modes. These are also given as a function of the geostrophic or 
surface-velocity direction. 

All results given in this section are found by a Galerkin numerical procedure in 
which each dependent variable q5 and x is expanded in a series of N basis functions, 
each being a combination of Chebyshev polynomials chosen to satisfy boundary 
conditions. Most of the results are found for N = 25, giving rise to an algebraic 
eigenvalue problem with 50 x 50 matrices, and thereby yielding 50 eigenvalues. On 
some calculations, as many as 50 terms were used, yielding a 100 x 100 system. The 
adjoint eigenvalue problem was also calculated in a few cases. The exact eigenvalues 
of the direct and adjoint problems are the same, and differences in their numerical 
approximations are one measure of the error in the results ; this comparison also serves 
to identify spurious eigenvalues. 

3.1. The atmospheric model 
3.1.1. The atmospheric model: onset 

Critical conditions for onset of instability are computed in the following way. With 
existing data for p = 0 in hand, we compute c for a sequence of other values of p. 
Holding ,u and R fixed, c is computed for the range of B and k encompassing the 
unstable modes. We decrease R a t  fixed p until the maximum value of ci (over k and 
e) vanishes. This establishes R,, the critical Reynolds number for each p, and the 
corresponding critical values of k ,  and e,. Repeating the procedures for other values 
of p establishes R, (p ) ,  k , (p)  and B&). 

The results for R,, k,, E ,  and the corresponding phase speeds c, are given as 
functions of p in table 1 ; the function R,(p)  is also plotted in figure 2. The minimum 
value of R, = R,* over all p occurs for p = p* = 2.03. Since p = -cot A cosp, and 
lcot A1 > p* for IAl < A* = 26.2", we can infer that  R, = R,* = 30.8 for all latitudes 
IAl < A*, and is attained a t  roll angles p, = c0s-l ( -p*  tan A )  = cos-l(-2.03 tanh).  
Furthermore, for latitudes (A1 > A * ,  critical conditions occur a t  the largest accessible 
value of p ; this implies that  the most dangerous disturbances correspond to rolls with 
lcos/3I = 1. Thus, in the Northern Hemisphere for A = A*,  p, = 180", and in the 
Southern Hemisphere, for A < - A * ,  p, = 0. I n  either hemisphere the geostrophic wind 
producing critical conditions for onset has direction a, = p c - e c ,  where the angle a, 
is measured counterclockwise from the East. 

3.1.2. The atmospheric model: supercritical instability characteristics 

The results in this subsection are for values of p < 1. They are conveniently 
interpreted as obtaining for A = 45" N (cot A = l) ,  allowing p, the roll angle, to vary 
over all possible angles. We adopt this point of view in the exposition, but remind 
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35 
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Rc 
32 

31 c \ 

I I I I 

0 1 2 3 4 
30 ' 

P 
FIGURE 2. Critical Reynolds number R, as a function of p for the atmospheric problem. 

p = coth cosp A R, k, % cr 

0 9oo 54.16 0.316 -23.3" 0.616 
1 45" 33.9 0.59 - 18" 0.506 
2.033 15O 30.8 0.89 - 9O 0.375 
3.732 15" 33.3 1.20 - 2" 0.290 

2.033 26.2" 30.8 0.89 - 9" 0.375 

TABLE 1 .  Onset conditions: atmospheric case 

the reader that the results are applicable either in part, if IAl > 45", or in their 
entirety, if Ihl < 45", provided the range of angles p is restricted such that 
lcospI < Itanhi. 

In our computations for moderate values of R (up to about 15 times critical), only 
one unstable mode was found for each parameter set (8 ,  k ,  R, p ) ,  for the atmospheric 
model. This is in accord with Lilly's (1966) findings, and those of subsequent workers 
on the traditional problem. As we shall see in 94, however, multiple modes of 
instability arise for kR % 1, even for the traditional problem. 

Figure 3 is a sequence of contour plots of growth rate as a function of ( B ,  k )  for a 
sequence of values of R ,  holdingp = 0 fixed. This is the traditional problem, and plots 
of this kind have been presented by Lilly (1966) and, following him, by others. We 
present them to facilitate comparison with the full problem. Recall that onset of 
instability occurs at  R = 54.2. 

In these figures, solid contours correspond to positive growth rates, broken lines 
to negative growth rates. At  R =  100, the first plot in the panel, the peak 
amplification rate kci (which we will label as CT henceforth) is 0.0051 at k = 0.27, 
E = - 13", with phase speed c,  = 0.414. This is the continuation of the instability mode 
responsible for onset of instability at R = 54.2, sometimes called the 'parallel- 
instability ' mode, or the type I1 mode seen in dishpan experiments. 

The second panel in figure 3 is at R = 130, a value slightly above the onset of the 
'type I ' instability, sometimes called the inflectional mode. The entrance of this mode 
is seen by the second peak at k x 0.55, E x 7", c, x 0.09. The onset of this mode occurs 
at R = 112.8, with small phase speed, and i t  can be traced to infinite Reynolds 
number. The type I1 mode coexists with i t  for a limited range of R, as the subsequent 
panels of figure 3 show. Note that, while the modes may be simultaneously present, 
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they exist at different locations in the (8 ,  k)-plane. They are not multiple modes in 
the sense used later; that is, they do not correspond to the eigenvalues of the same 
eigenvalue problem. Here we perpetuate the disconcerting confusion in the 
hydrodynamic-stability literature, in which the use of the word 'mode' of instability 
seems to have several meanings. At  R = 200 the (type 11) peak at lower wavenumbers 
has disappeared, leaving only one local maximum corresponding to the type I 
instability. The region of instability in the (6 ,  k)-plane continues to enlarge, as seen 
in the remaining panels; in particular, the portion identified at lower R with the 
type I1 mode continues to support instability. 

The most unstable configuration in the interval 0 < p < 1 of p occurs at p = 1 (or 
/3 = 180°, for A = 45'). Therefore the effect of the horizontal component of rotation 
at  A = 45' is most clearly seen for /3 = 180'; and figure 4, containing the same 
information as figure 3, has been prepared for this case. The first panel (R = 50) shows 
an instability clearly established below the onset for p = 0, and at a somewhat higher 
wavenumber. The peak growth rate umsx = 0.0087 occurs at E = - 18", k = 0.55 and 
c, = 0.508. This most unstable disturbance resembles the type I1 instability of the 
traditional problem in being the continuation in R of the onset mode (with critical 
conditions R, = 33.9, E ,  = - 18", k, = 0.594, c, = 0.506) and having a phase speed 
significantly different from zero. On the other hand, it has a wavenumber close to 
that of the type I disturbance of the traditional problem. As R is increased, the phase 
speed of the most-unstable mode decreases, while the wavenumber decreases slightly 
and then increases again, to k = 0.5 at R = 400. The angle E at which the most-unstable 
disturbance occurs increases smoothly to E = 17' a t  R = 400. In contrast with the 
traditional problem, only one local maximum of growth rate occurs over this range 
of R. 

The variations of the most-unstable modes with R < 400 for both p = 0 and p = 1 
are traced in figures 5 and 6. Figure 5 shows the growth rate u as a function of R. 
As a guide, some points are marked and labelled by a pair of numbers; the first of 
these gives the angle E and the second the wavenumber k at which the most-unstable 
disturbance is found. For the traditional problem, p = 0, we track both local maxima, 
so long as both exist, even though the high-wavenumber peak is not the most unstable 
over the entire range of R. In this figure computed points are shown by dots, and 
the continuous curve is drawn between them. Smaller increments of R were taken 
for the casep = 1 in the interval 100 < R < 170 to rule out the possibility of existence 
of two local maxima of u in a relatively small interval of R. 

The phase speeds of the most-unstable distances described in figure 5 are displayed 
in figure 6. The two branches for thep = 0 case correspond to the two local growth-rate 
maxima. Both figures 5 and 6 show the p = 0 and p = 1 cases approaching each other 
at  the larger values of R. This reflects the vanishing effect of the perturbation Coriolis 
force as R +m , evident also in figures 3 and 4. 

Figure 7 shows two neutral curves k versus R. One curve is for p = 0, and is drawn 
for E = - 23.3', the critical value of E for this case; the other is for p = 1 and E = - 18", 
the critical angle for that case. Phase speeds are given in figure 8. The upper branches 
of the neutral curves of figure 7 correspond to the lower branches of figure 8, and 
vice versa. Two important features are evident in comparing these neutral curves: R, 
is lower for the full problem, and the band of unstable wavenumbers is wider at  
moderate supercritical values of R. 

Both upper and lower branches of the two neutral curves in figure 7 appear to be 
approaching each other for large R, and the lower branches in fact appear to coincide. 
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- 

55 

17', 0.5 
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U 

0.016 - 
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R 

FIQURE 5. Growth rate of the most-unstable mode as a function of Reynolds number for the 
atmospheric model. Values that tag the points on the curves indicate the roll angle and wavenumber 
respectively for the most-unstable mode. Circles mark the computed points for p = 1 and triangles 
mark the computed points for p = 0 (traditional problem). Note that with p = 1 there is only one 
mode of instability, as opposed to two modes present when p = 0. 

-0.1 1 I I 1 I I I 1 I 

0 100 200 3 00 400 
R 

FIQURE 6. Phase speed of the most-unstable mode aa a function of Reynolds number for the 
atmospheric model. Circles mark the computed points for p = 1 and triangles mark the computed 
points for p = 0 (traditional problem). Note that with p = 1 there is only one mode of instability, 
as opposed to two modes present with p = 0. 
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p = 1, E = -18" 
- 

- - -- 
0 / f  -- 

/ 
p = 0, E = -23.3' 

- 

I 1 A 

2= 0, E = -23.3' 
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0.2 ' I I I I I J 
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R 

FIGURE 8. Phase speed for the neutral modes displayed in figure 7: -, p = 1, E = - 18"; ---, 
p = 0, E = -23.3' (traditional problem). Note that the branches with larger values of phase speed 
correspond to the lower branches of the neutral-stability curves shown in figure 7. 

FIGURE 7. Neutral stability curves for the atmospheric model : -, p = 1, E = - 18' ; ---, p = 0,  
E = -23.3' (traditional problem). Note that withp = 1 the critical Reynolds number is considerably 
reduced and the range of unstable wavenumbers for supercritical conditions increased. 
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The behaviour of the lower branches in the limit R+m is better displayed in plots 
of k versus kR; the data in figure 7 are replotted in figure 9. Although one cannot 
confirm i t  from these figures, the neutral curves do not in fact coalesce as R+m ; they 
turn out to be very close because the two values of E, for y = 0 and p = 1 differ only 
slightly. In the limit R+m,  both upper and lower branches of the neutral curves 
depend only on E .  On the lower branch, R+m,  k+O, and figures 7-9 suggest that 
ER + constant in the limit. This is confirmed by computing the eigenvalue problem 
for the limit equation set 

( V - c ) $ " -  V"$ = (ikR)-1[$iV+2x'], (25a) 

( V - c ) x +  U'$ = (ikR)-'[x"-2$']. (25b)  

This problem is independent of y .  For each value of E ,  variation of the parameter 
kR determines the regions of instability and a neutral value of kR. The results for 
both the atmospheric and oceanic models are shown in table 2.  We note that the 
atmospheric case for E = 0 has been previously computed by Gill & Davey (1969) for 
the buoyancy boundary layer with the same result. It is worth noting that the phase 
speeds in table 2 are either greater than the maximum of V ( z ;  E )  over z or less than 
its minimum ; there are no critical layers. 

The behaviour of the system for fixed R and variable y is illustrated in figure 10. 
Contour plots of growth rate as functions of k and E are given for y varying from 
p = - 1 to y = 1 with R held fixed at 130. Thinking of h = 45", this range of values 
of y corresponds to p varying from 0" (rolls due east) to 180" (rolls due west). (Rolls 
'east ' or 'west ' do not sound distinct ; however, the system of coordinates employed 
here implies a disturbance wavenumber vector directed 90" counterclockwise to the 
roll 'direction', so 'east' rolls have a wavenumber vector directed towards the north, 
while 'west ' rolls have a wavenumber vector directed towards the south.) Only one 
weak unstable peak is seen in the first plot (p = 0") of the panel, centred near the 
location of the type I1 disturbance, but a second stable peak exists at higher 
wavenumber rather near the location of type I disturbances. The second peak gathers 
strength as p increases, and has achieved positive values at  p = 60". At p = 90°, 
coinciding with the traditional problem, the higher-wavenumber peak is well 
established, but is still lower than the original unstable peak, and the islands of 
instability have merged. Only one peak remains at  p = 120", higher than the two it 
replaces and closer to the onset peak than to the type I peak. The peak continues 
to grow and to drift towards the larger e and k regions associated with type I 
disturbances as p increases to 180". The problem is symmetric in p about 180", and 
the range 0 < /3 < 180" therefore covers all possibilities; thus the roll direction 
p = 180" is most unstable. 

The basic flow is fixed by R and a, the direction of the geostrophic flow, not by 
R and p. It is therefore of interest to track the most-unstable (highest peak only) 
disturbance as functions of these physical 'input ' parameters and A. This is done in 
figure 11 for A = 45" N and R = 130. The figure shows the system response parameters 
as a function of a, giving the growth rate and phase speed of the most-unstable mode, 
and a pair of numbers giving the associated values of E and k. The response is periodic 
in a, with a half-period shown. 

Figure 12 is the same as 11, but for R = 300. Growth rates are larger, and phase 
speeds are smaller, and dependence on a decreases, in accord with the diminishing 
influence of Coriolis accelerations. 
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1 10 100 
kR 

1000 

FIGURE 9. Neutral-stability curves for the atmospheric model showing the special feature of the 
lower branch: -, ,u = 1, E = - 18"; ---, p = 0, E = -23.3O (traditional problem). Note that the 
asymptotic value of kR as k+O is different for the two cases. 

Atmospheric case Oceanic case 

8 kR cr kR cr 

- 40" 8.7 0.99 0.7 1 -2.8 
- 20° 9.3 0.76 0.63 -3.3 

O0 13.3 0.47 1 .o -2.2 
20" 26.6 0.18 1.7 -1.6 
40" 67.5 -0.69 3.4 -1.2 

TABLE 2. Lower-branch asymptotes 

3.2.  The oceanic model 

The free surface in the oceanic model exerts a weaker restraint on possible disturbance 
motions, therefore leading to  a system more prone to instability - and thus to the 
low value of critical Reynolds number, Rc = 11.816, found by Iooss et al. (1978) for 
the traditional problem. With a critical Reynolds number this low, there is little 
scope for further destabilization, and the additional effects of the horizontal com- 
ponent of angular velocity are, as expected, quite weak. Table 3 contrasts data for 
p = p* = 0.156, the value of p yielding the smallest value of R, (=  R:), with those 
for the traditional problem ,u = 0. 

P R, k C  EC cr 

0 11.8 0.32 -6.1 -0.561 
0.156 11.6 0.33 -5.8 -0.554 

TABLE 3 
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FIGURE 11. Growth rate and phase speed for the most-unstable mode for the atmospheric model 
as a function of the angle a of the geostrophic flow from due east. In all cases R = 130 and h = 45O. 
The values tagging the points indicate the direction B of the rolls and wavenumber k respectively. 
The curve shown is symmetric about the marks indicated. 
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FIGURE 12. Growth rate and phase speed for the most-unstable mode for the atmospheric model 
as in figure 11, but now R = 300 and A = 45'. The values tagging the points indicate the E and k 
respectively. The curve is symmetric about the marks indicated. 
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The roll direction at onset for this problem is /3 = 180" for latitudes between 
IAl = 90" and IAJ = A* = cot-'p* = 81.1'. For this narrow range of latitudes, R, is 
between 11.6 and 11.8. For IAl < A*, R, = 11.6, and the roll direction a t  onset is 
8, = cos-l ( -p* tan A ) .  

The critical Reynolds number depends so weakly on p one would think that, in 
contrast with the atmospheric case, there is no significant dependence of unstable 
modes onp. This is not the case. Figure 13, the analogue of figure 5, shows that growth 
rates of the most-unstable disturbance for p = 1 are 50 yo or more larger for slightly 
supercritical R than growth rates for p = 0. Note that p = 1 is not the most-unstable 
configuration of the system. 

Figure 13 shows the existence of two unstable modes for R exceeding a certain value 
depending on p. The most-unstable disturbance switches from one mode to the other 
at R x 132 for p = 1, and at R x 140 for the traditional problem ,u = 0. The existence 
of two local maxima of u for p = 0 is in accord with the atmospheric case, but only 
one appeared in the atmospheric case for p = 1. The angle E between the surface 
velocity vector and the roll direction varies significantly for values of R less than 80, 
but is virtually constant for each mode for the higher values of R shown in figure 13. 
Thus the most-unstable mode labelled A for either p = 0 or 1 settles down to a 
value of E of lo", and mode B rapidly settles to a value of about 20". 

Figure 14 shows that the phase velocities of the most-unstable modes are negative 
and the magnitudes are not small, even for the larger R,  in contrast with the 
atmospheric case. On the other hand, the phase speeds of mode B are small relative 
to the surface component V(O), the relative propagation speed being about 0.07. The 
approach to nearly constant values of phase speeds occurs in the range of R at which 
e+constant, suggesting that the phase speed a t  higher R depends only on E ,  a result 
known to be true for R-tm. 

Neutral curves, k versus R ,  are shown for p = 0 and p = 1 in figure 15 at E = -6", 
close to the critical value of E for the traditional problem p = 0. This value E does 
not produce the critical conditions for either ,u = 0 or p = 1 ,  but the shapes of the 
neutral curves are typical. Although the horizontal component of angular velocity 
does not change the critical values for instability in the oceanic case, the band of 
unstable wavenumbers at  marginally supercritical values of R is much wider for p = 1 
than i t  is for p = 0. Thus the horizontal component produces significantly higher 
growth rates (figure 13) for a wider range of disturbances than that found under 
slightly supercritical conditions for the traditional problem. 

The data in figure 15 are replotted, k versus kR, in figure 16, to bring out the 
asymptotic behaviour on the lower branch. This is similar to the atmospheric case, 
as may be seen by comparing it with figure 9. 

The existence of two unstable disturbance forms in the oceanic case (figure 13) 
appears similar to the traditional atmospheric problem, but there is a fundamental 
difference. In the atmospheric case only one unstable mode occurs for each (moderate) 
supercritical value of R at given values of k ,  E and p (in $4 we will show that 
additional disturbance modes enter at  very large R ) .  In the oceanic case two unstable 
modes are found for the same values of k ,  E and p for a range of moderate supercritical 
values of R. This has previously been shown to be true by Spooner (1983). Figure 17 
documents the coexistence of two unstable modes for the p = 0 case; plots for other 
values of p are similar. 

The most-unstable modes for two supercritical values of R, treated as functions 
of the Ekman-layer surface-current direction a, are traced in figures 18 (R = 130) 
and 19 ( R  = 300). These are the analogues of figures 1 1  and 12 for the atmospheric 

3-2 
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FIGURE 13. Growth rate of the most-unstable modes as a function of Reynolds number for the 
oceanic model. Values tagging the points indicate the E and k corresponding to  the most-unstable 
modes. Curves marked A are for p = 1. Curves marked R are for p = 0 (traditional problem). Note 
the existence of two modes of instability for both the cases. 
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FIGURE 14. Phase speed of the most-unstable modes as a function of Reynolds number 

for the oceanic model. See figure 13 for explanations. 
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1.i 

0 In p = 1, E = -6' 

k 
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R 

FIGURE 15. (a) Neutral-stability curves for the oceanic model: -, p = 1, E = -6"; ---, p = 0, 
E = -6" (traditional problem). Note that p = 1, E = -6" does not correspond to the critical 
condition; hence the onset Reynolds number for the traditional problem is smaller than its value 
for ,u = 1, E = -6". However, the increased range of unstable wavenumbers for supercritical 
conditions for p = 1 is clearly seen. (b) Phase speed for the neutral modes displayed in (a): -, 
p = 1, E = -6"; ---, p = 0, E = -6" (traditional problem). Note that the smaller values of phase 
speed correspond to the upper branch of the neutral-stability curves in (a). 

case; as in those figures, figures 18 and 19 are drawn for A = 45' N. These curves are 
periodic in a, with one-half of a period displayed. The growth rates of the most-unstable 
modes are larger in the oceanic problem than they are in the atmospheric case, 
reflecting the absence of the stabilizing influence of a rigid wall, but the shapes of 
the curves are similar at the higher values of R. The wavenumber of the most- 
unstable mode, the variation between the minimum and maximum values of CJ 
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FIQURE 16. Neutral-stability curves for the oceanic model, showing the special feature of the lower 
branch:-,p = 1 , ~ = - 6 " . - - -  , , p = 0,  B = - 6" (traditional problem). Note that the asymptotic 
values of kR as k+O are equal for the two cases shown. 

FIQURE 17. Growth rate as a function of wavenumber for the oceanic model for different Reynolds 
number. p = 0 in all cases and R = 80, 100 and 120 as indicated. Curves marked A correspond to 
the mode usually called type I1 or parallel mode. Curves marked B correspond to the mode usually 
called type I or inflectional mode. 
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FIGURE 19. Growth rate and phase speed for the most-unstable mode for the oceanic model as a 
function of a. R = 300, p = 1. The values tagging the points indicate the B and k corresponding 
to the most-unstable mode. 
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and their respective locations in a, are similar a t  R = 300. As we shall see in $4, 
limR+m vmax (6 ,  k, R, a), known from the results of $2 to be independent of a and to 
be the same for both the atmospheric and oceanic model, occurs at  E w 23" and has 
value gmax w 0.037. Comparing figures 12 and 19 suggests that R = 300 is 'larger', 
i.e. closer to the inviscid limit in the oceanic case, than the corresponding atmospheric 
case. 

The phase speeds in figures 18 and 19 vary little with a. The most-unstable modes 
propagate normal to, and to the right of, the roll axis at a significant speed. The 
speed relative to the surface current is, however, quite small. Thus, if an unstable 
roll motion were to be made visible, i t  would appear to  be (nearly) advected with 
the surface current. 

The inviscid limit is considered in 54. 

4. The inviscid limit 
We turn to the limit R+m, k fixed. As discussed in 52, the limit problem requires 

the solution of Rayleigh's equation (16) subject to boundary conditions (17). 
Furthermore, as discussed in $2.4, one may restrict attention to the atmospheric case, 
finding the oceanic results by use of (20). We therefore focus on the atmospheric 
case V ( z ;  B )  = -sinE+e-Z sin(z+s). 

We recall that the Rayleigh equation captures the behaviour only of unstable 
modes, c,+O+ (Lin 1955), and that non-trivial solutions exist only if V has a point 
of inflection. Furthermore, i t  is necessary that Re ( V - c )  = 0 at at least one interior 
point of the flow. Rayleigh's equation is therefore singular, for neutral modes only, 
at a minimum of one interior point z,, defined by the condition V(z,) = c,, unless z, 
is also a point of inflection. In the latter case, z, is a regular point of the differential 
equation; solutions for which all points are regular are called regular neutral modes, 
following Miles (1961). Neutral modes satisfying Rayleigh's equation with a singular 
point in the interior are singular neutral modes. 

The Ekman-layer velocity profile has an infinite number of inflection points at  the 
levels 

z, = (n+:)n--E, n = 1,2 ,  ... 

If V - c ,  vanishes at any inflection point z,, then it cannot vanish again in z > z,, 
and no zeros of V - c, for z < 2, can be at points of inflection. A few profiles are drawn 
in figure 20, and the inflection points corresponding to n = 1 are identified. The n = 1 
inflection point for E = 15.93" falls on the z-axis (that is V(z,) = 0). It is clear that 
the vanishing of V(z , ) - c , ,  any n, in the range 8 < 15.93' requires V - c ,  to vanish 
at least twice, and only one of the intersections can be at an inflection point; thus 
any neutral modes that may exist for B < 15.93' must be singular neutral modes. By 
contrast, if E > 15.93", there is the possibility of one and only one regular neutral 
mode, with c,  = V(z,) .  Furthermore, by a well-known argument due to Tollmien (see 
Lin 1955), one expects a regular neutral mode to exist with this value of c,  a t  an 
appropriate value of k with contiguous unstable modes existing for neighbouring 
values of k. 

Regular neutral modes arc easy to compute when they exist; c, is known in 
advance, and the problem devolves to the determination of k. For this calculation, 
the Rayleigh equation reduces to an ordinary Sturm-Liouville problem. Unstable 
modes arising at neighbouring values of k are also easy to compute. By contrast, 
singular neutral modes arise at c, values that are a priori unknown, and the associated 
eigenfunction is singular a t  the critical point. To find the singular neutral modes, i t  
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FIGURE 20. Velocity profile of the velocity component V transverse to the roll direction for the 
atmospheric model for different roll directions. c varies from -40" to 40'. Location of the inflection 
point nearest to the ground (z = 0) is indicated on the curves. 

is preferable first to compute unstable modes, varying k so that ci + 0 + ; at the same 
time the limit ci + O  + must be computed by analytical continuation to the complex 
z-plane, deforming the contour of integration to avoid the singular point z = zc. Thus 
the determination of singular neutral modes is more difficult, and involves the prior 
determination of unstable modes. We find multiple modes of instability for angles 
E > 15.93', for which a regular neutral mode is possible, as well as for angles 
E < 15.93", for which no regular neutral modes are possible. Since each unstable mode 
is presumably associated with a neutral mode as k is varied, it  appears that one must 
anticipate the existence of singular neutral modes for any value of E .  With this in 
mind, we always start with unstable modes, finding neutral modes as special cases: 
we therefore begin by describing the unstable disturbances. 

4.1. Unstable disturbances 
We may locate unstable modes in one of two ways. For a given value of E we may 
fix k and compute the complex phase speeds c by an inviscid version of our Galerkin 
routine. This matrix method produces approximations to a substantial number of 
eigenvalues, and increments in k may be chosen arbitrarily. Thus a survey in k may 
be carried out with coarse increments of k .  When an approximation to an unstable 
mode is found the dispersion relation can be found by taking smaller steps in k.  (By 
a 'mode ' here, we mean the family of disturbances associated with the eigenvalues 
c existing as continuous functions of the parameter k.  Multiple unstable modes occur 
if, for fixed E and k ,  more than one eigenvalue with ci > 0 is found.) Generally, tracing 
a dispersion relation using a matrix method is inefficient and leads to inaccuracies 
for small ci, and we therefore turn to  another method to validate Galerkin results, 
and to trace out the details of the dispersion relations. 

The second method that we use is a shooting technique ; such methods require a 
good initial guess for c ( k ;  E ) ,  which we obtain by use of our Galerkin procedure. The 
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FIGURE 21 (a) .  For caption see facing page. 

dispersion relation for each mode can then be traced by taking fine steps in k. An 
alternative starting procedure that we could have employed is to appeal to the results 
computed by Gill & Davey (1969) for the BBL, identical with our problem for E = 0. 
Results can be obtained by continuation in both E and k using shooting methods. Gill 
& Davey (1969), however, found only one unstable mode; thus this alternative 
procedure is incomplete and therefore not adopted. Shooting methods are natural for 
systems that are singular or ‘nearly ’ singular (eigenvalues with small ci contiguous 
to singular neutral modes). While matrix methods probably can be modified to treat 
such problems, they lose those features that give them advantages over shooting 
methods; thus shooting (or a matrix imitation of shooting) is essential for such 
problems. Having located a mode, we trace i t  by continuation in k using a shooting 
method. 

Figure 21 (a )  shows the growth rates of the first two unstable modes as functions 
of wavenumber k, for e = 0, and figure 21 ( b )  gives the corresponding phase speeds. 
The ‘primary mode’, that giving the largest value of u = kci, has previously been 
described by Gill & Davey (1969), and our results agree with theirs; for example, they 
cite max u = 0.014 a t  k = 0.39, which we confirm. The second instability mode is new. 
For this mode, maxu is 0.00064, considerably smaller, and the band of unstable 
wavenumbers almost coincides with that of the primary mode, but extends to slightly 
larger wavenumbers. Figure 21 ( b )  shows that the phase speed of the primary mode 
is positive, and that of the secondary mode slightly negative. The eigenfunctions for 
the most unstable of the two modes are shown in figure 23 (page 71) ; note the higher 
penetration of the second mode. 



Effect of latitude on the instability of the Ekman layer 69 

0.3 

cr 

0.2 

0.1 

Mode 2 

0 

-0.005 

-0.0 10 

0 0.5 1 .o 
k 

FIGURE 21. (a) Growth rate as a function of wavenumber k for the first two modes for the inviscid 
problem for E = 0. Note that the maximum growth rate for the second mode is far smaller than 
the first mode. ( b )  Phase speeds for the modes displayed in (a). Note that mode 2 has a very small 
negative phase speed. 

The unstable bands of primary and secondary modes do not always show as much 
overlap as they do for E = 0. The functions a ( k ) ,  or fragments thereof, are shown in 
figure 22 (a)  fore = 8", 9" and 10' ; the respective phase speeds are given in figure 22 (b ) .  
The maximum growth rates of primary and secondary modes shown in this figure 
do not differ greatly. Furthermore, the high-wavenumber ends of the unstable bands 
are significantly larger for the secondary modes than for the primary modes. 

There are at least two unstable modes for every angle E for which instability 
obtains, and we conjecture the existence of an infinite number of modes whenever 
a primary mode exists. The existence of three unstable modes has been verified for 
E = - 20°, k = 0.5, with eigenvalues shown in table 4. Also shown in the table are the 
values of V at the first three inflection points z,, n = 1 ,  2, 3, the locations of these 
inflection points, and the locations of the critical levels for each mode. The limit V(z ) ,  
z+co,  for this value of E is V ,  = 0.342020: the difference IV(z,)- V,l+O rapidly 
with n, V(z,) being 0.34229 and V(z,) being 0.34201. 

The first mode has two critical levels, the higher being slightly greater than z1 ; 
the second has three critical levels, the highest being slightly greater than z2. The 
third mode has three critical levels, the third being near z3. Since c, is known to a 
fixed accuracy and the difference (c, - V , l +  0 as n increases, there is a loss accuracy 
in the location of the critical levels, and we cannot say if the trend of the first two 
modes is continued, with the highest critical level just above z3. In any event, each 
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P x w m  22. (u) Growth rate as a function for wavenumber k for the first two modes for the inviscid 
problem. The curves are for 6 = 8". 9" and 10" respectively. ( 6 )  Phase speeds for the modes displayed 
in (u). 

mode is associated with a critical level 'near'  an inflection point, and the next mode 
to occur is associated with the next (higher) critical level, and has one additional 
critical level. Our conjecture that an infinite number of unstable modes exists is based 
upon the observations just made, since the profile V ( z )  possesses an infinite number 
of points of inflection. 
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FIQURE 23. Real part of the eigenfunction $ for the first two unstable modes for the inviscid 
problem. E = 0, k = 0.4. The eigenfunctions in this figure and in figure 24 are normalized to yield 
d$/dz = 1 at z = 0. Note the deeper penetration of mode 2. 

Mode C zn V(zn 1 zc 

1 0.4751 +O.O1943i 1.920 0.48865 2.013, 0.592 
2 0.3363+0.0008502i 5.061 0.33658 5.16, 3.73, 0.34 
3 0.3423+0.00003674i 8.203 0.34229 8.2, 6.9, 3.5, 0.35, 0.3495 

TABLE 4. Eigenvalues for E = - 20°, k = 0.5 

The higher the mode, the greater the computing requirements. Since the highest 
critical level increases by approximately x as one goes from mode n to mode n + 1, 
the computational region required to capture each successive mode increases 
significantly. This is illustrated in figures 23 and 24, which shows the real part of the 
eigenfunctions for the three modes of table 3;  these are normalized by taking 
$'(O) = 1. The eigenfunctions have maximum slope near the highest critical level and 
are maximum in absolute value for values of z above the highest critical level. 

To confirm the existence of multiple modes for fixed k, R+m, we have computed 
the viscous ,u = 0 equations for k = 0.3 for a sequence of Reynolds numbers ranging 
from 500 to 32000. The results for the atmospheric model for E = 0" and for the 
oceanic model for 8 = 20" are shown in table 5 : for these calculations, each variable 
was expanded in a 50 term Galerkin series. The upper boundary was taken to be at 
z = zm = 15 in the atmospheric model and z = -20 in the oceanic case. For 
comparison, the results from the Rayleigh equation are also shown; the Rayleigh- 
equation phase speed has been adjusted for the oceanic case using the transformation 
indicated in 52.4. Notice that the Rayleigh equation accurately predicts the primary 
mode over the entire range of R shown. Although the second mode is present at 
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subscript on $r indicates the mode number. 

R 

500 
1000 
2 000 
4000 
8000 

16000 
32000 

03 

R 

500 
1000 
2000 
4 000 
8000 

16000 
32 000 

03 

Atmosphere E = Oo, k = 0.3 

c (mode 1)  

0.215522 + 0.0434869i 
0.206 772 + 0.045 9 14 Oi 
0.204442 + 0.0433230i 
0.206365+0.0410813i 
0.20881 1 +O.O414429i 
0.209797 +O.O427342i 
0.209 993 + 0.043 414 1 i 
0.21000 +0.0439751 

c (mode 2) x 10 

-0.167 226 -0.027 159i 
- 0.130 228 - 0.005 799i 
-0.112328 +O.O04375i 
- 0.101 88 1 + 0.009 725i 
-0.096005 +0.013 714i 
-0.093 137 +O.O16507i 
-0.091 452 +0.017 7261 
- 0.091 645 + 0.019 485i 

Ocean 6 = 20°, k = 0.3 

c (mode 1) c (mode 2) x 10 

-0.318340 + 0.077 66% 0,205706-0.020657i 
-0.31 1 769 + 0.085859i 0.170093 +O.O00578i 
-0.308277 + 0.089350i 0.151 163+0.010519i 
- 0.306 387 + 0.090 9471 0.139775 +O.O16862i 
-0.305385+0.091705i 0.1339O6+0.021288i 
-0.304865 +O.O92072i 0.131 950 + 0.022955i 
- 0.304 598 + 0.092 251i 0.134093 +O.O22782i 
-0.30429 +0.0923821 0.1299 +O.O27605i 

TABLE 5. Eigenvalues for t w o  examples, illustrating the existence 
of multiple modes of instability at large R 
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Reynolds numbers as low as 1000 (in the oceanic case), it is not accurately predicted 
by the Rayleigh equation until R is very large. 

In  figure 25 the growth rates, wavenumbers and phase speeds of the most-unstable 
inviscid disturbances are presented as functions of e for the interval 0" < e < 40". 
The data in this figure were generated by identifying the primary mode for each e, 
then locating its peak over k. The maximum growth rate urn for any given mode, 
and the wavenumber k, at which it occurs are continuous functions of e. The break 
in the curve at E x 8.5" is associated with a crossover of the primary and secondary 
modes. The continuations of the secondary mode urn and k ,  are shown in figure 25 as 
broken lines. 

The most-unstable inviscid mode having zero phase speed is of particular interest. 
Lilly (1966) has argued that the experimental method (flow visualization using dye) 
used by Faller (1962) to discover the type I instability is primarily responsive to 
disturbances with small phase speeds. Faller noted the similarities between his 
experiment and that of Gregory, Stuart & Walker (1955, GSW), and of Stuart's 
stability analysis appearing in that paper. The experimental method of GSW is 
responsive only to disturbances with zero phase speed, and Stuart found reasonable 
agreement between the band angle (equivalent of e) associated with neutral distur- 
bances with zero phase speed and experimentally observed band angles. Faller (1962), 
following Stuart, also found reasonable agreement between experimentally observed 
band angles and those associated with inflection points at  small phase speeds. Stuart 
found poor agreement between the wavelengths predicted by the same method, and 
those observed experimentally ; Faller did not have the corresponding theoretical 
wavelength information. It would seem that these comparisons are in any event 
inappropriate ; it  seems more reasonable to compare experimentally observed patterns 
with the most-unstable disturbances, not with neutrally stable ones. If this is done 
in the present case, the results are in better agreement with the experimental data. 
Faller's observed average wavelength was 10.9D, or k = 0.58, and e = 14.5"+ 2". We 
have computed the neutral mode having zero phase speed, and find it to occur at 
E = 15.93' and k = 1.38, giving a wavelength shorter than experiment by more than 
a factor of 2. By contrast, we find that the most-unstable mode with zero phase speed 
(see figure 25) occurs at e = 11.8" and k = 0.6, close to experimental observations. 

In GSW, Stuart suggested that the discrepancy in wavenumber between that 
observed and that predicted for neutral stability for the rotating disk is evidence of 
the considerable influence of viscosity on the wavenumber. The present quite 
analogous case suggests that the discrepancy is due to comparing inappropriate 
situations, and that better agreement is achieved if the experimental data are 
compared to the most-unstable mode having zero phase speed. 

4.2. Neutral modes 
For each 6 the growth-rate curve u ( k )  has two branches for each instability mode, 
and the neutral wavenumber of the upper branch can be found numerically. For the 
singular neutral modes which predominate, this must be done by appropriate 
deformation of the contour of integration. All higher modes have more than one 
critical level and are necessarily singular. 

Since more than one unstable mode appears to exist for each value of e, a collection 
of neutral wavenumbers k ,  of the upper branches of a , (k )  exists, where the index 
n labels the unstable modes. If the collection of neutral wavenumbers were to be sorted 
according to wavenumber, with k,,, > k,, then the largest such k defines the 
asymptote of the neutral curve as kR+m for each e.  Unfortunately we cannot track 
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FIGIJRE 25. (a )  Growth rate and wavenumber for the most-unstable mode of the inviscid problem 
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where they no longer correspond to the most-unstable mode. ( b )  Phase speed for the modes displayed 
in (a). See ( a )  for explanations. 
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FIGURE 26. Wavenumber and phase speed of neutral modes for the inviscid problem. 

more than three unstable modes. We are unable even to determine if the number of 
unstable modes is finite or infinite, and, if the latter is true, whether the sequence 
k, has an accumulation point. 

The uncertainty in fixing the asymptote of the neutral curves is, however, largely 
a question of academic interest. Except in the neighbourhood of certain angles (like 
8 z 8.5', as shown in figure 25)  at which primary and secondary modes interchange, 
the secondary and tertiary instability modes that we have found are extremely weak, 
and only the primary mode is of significance. In  figure 26 we show the upper neutral 
wavenumber for the primary modes for 8 between -20' and 50°, together with the 
associated phase speeds. 

5. Energetics 
The equation governing perturbation kinetic energy may be obtained by forming 

the scalar product of (5) with the perturbation velocity vector u, followed by 
integration over a volume consisting of one wavelength in the y-direction, all z 
occupied by the fluid and unit distance in the x-direction. The perturbation Coriolis 
forces do no net work and therefore do not contribute to the overall energy balance. 
They do provide coupling, however, allowing energy exchange between the kinetic 
energy associated with perturbation velocity component along the rolls (2-direction 
or longitudinal) with those in the cross-plane (y, z )  normal to the roll axis. Therefore 
i t  is useful to separate out these contributions to the kinetic energy. Let 

k znlk 

0 
(f> = Gj f(Y,Z)dY 

for any function of y and z periodic in y, and let 

E, =-  (u ' )~z ,  :c 
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I ,  = - (VW) V'dz, 

b 

c 
J = 2 (uv) dz+2pJa (uw) dz, c 

D, = ( IVvI2 + IVwI2) dz = ((e, - curl o),) dz, (26g) J: J: 
with a = 0, b = co for the atmospheric model, and a = - co, b = 0 for the oceanic 
model. The second form of D,, arising by extracting a divergence with vanishing 
volume integral, is the more convenient. We then have 

1 1  
dt R R  

1 1  
dt R R  

- I ,  +- J--D,, 
dE 1- 

2- - I ,  -- J-- D,. dE 

The terms on the right-hand side of (27) may be computed for any unstable mode, 
and we may then try to  determine which processes are important to the instability. 

I n  (27) I ,  and I ,  may be identified as energy-production terms, their sum being 
precisely the production rate of total perturbation kinetic energy ; R-lD, and R-ID, 
are rates of dissipation of perturbation kinetic energy, and R-IJ represents a 
transfer from perturbation kinetic energy of longitudinal motion to  perturbation 
kinetic energy in the cross-plane. In  the absence of this transfer term, the growth 
of E, would then be independent of the longitudinal perturbation-velocity component, 
and would derive solely from the production I , ;  El would derive solely from work 
done by the Reynolds stress - (uw), which exists by virtue of the growth of cross-plane 
perturbations. This represents the situation as R+co. For finite R ,  the J-term couples 
cross-plane and longitudinal motions more intimately, and i t  is then possible for 
instabilities to owe their existence to growth of u, with cross-plane motions driven, 
a t  least in part, by transfer of energy from El to E,. 

Table 6 lists a number of cases and the corresponding values of the integrals 
appearing in the energy budgets (27) .  In the case of the (three) unstable examples, 
all integrals are proportional to  exp (20-t), and the values shown are the constants of 
proportionality. The integrands are thought to be accurate to four significant digits, 
but there is a loss of accuracy in some cases due to truncation errors in the integration 
procedure (Simpson's rule with 200 points). The first three cases in the atmosphere 
correspond to onset in the atmospheric model at the respective values of p,  as do the 
cases 8 and 9 for the oceanic model. Thus cases 1 and 8 correspond to the critical 
conditions over all latitudes less than A*,  case 2 corresponds to critical conditions a t  
latitude 45', cases 3 and 9 correspond to critical conditions for the traditional problem 
( A  = go'), case 4 corresponds to onset of the type I1 instability in the traditional 
problem, while cases 5-7 are the most-unstable modes for h = 45'. 
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Case 1 2 3 4 5 6 7 8 9 
Type Neutral Neutral Neutral Neutral Unstable Unstable Unstable Neutral Neutral 

R 30.8 33.9 54.16 112.76 100.0 200.0 400.0 11.6 11.8 

k 0.89 0.59 0.136 0.551 0.45 0.53 0.50 0.33 0.32 
p 2.03 1 .o 0.0 0.0 1 .o 1 .o 1 .o 0.156 0.0 
El 2.329 1.570 7.040 3.505 2.446 3.733 3.960 0.6715 0.6597 
I ,  0.3056 0.1175 0.02365 0.07898 0.09097 0.1241 0.1367 0.04905 0.04277 

E -go -18' -23.3' 7.2' -10' 8' 17' - 6' - 6' 

-R-'D, 0.2202 0.08887 0.01610 0.00760 0.04724 0.05157 0.03776 0.2704 0.02278 
-R-'J 0.08564 0.02873 0.00755 0.00138 0.01161 0.00468 0.00223 0.02206 0.01996 

Z2 0.02651 0.01230 0.00174 0.01980 0.01243 0.02641 0.02919 0.00082 0.00032 
R-lD, 0.1122 0.04106 0.00929 0.02118 0.01455 0.01479 0.00990 0.02293 0.02027 
E2 1.407 0.8745 0.4717 0.8515 0.7233 0.8965 0.8813 0.5348 0.5306 

TABLE 6 

In all cases shown J < 0, which implies that energy is transferred from the 
longitudinal motion and deposited in the cross-plane. This transfer is an essential 
factor in the instability mechanism at lower values of R.  A disturbance can only be 
self-excited if vertical motions develop, but the rate of production of cross-plane 
perturbation kinetic energy is much smaller than the rate of its dissipation at onset, 
and i t  remains smaller for a range of supercritical R. For such cases, illustrated by 
cases 1-5, 8 and 9 in table 6, self-excitation depends upon production of longitudinal 
energy El ,  with feedback occurring by transfer of energy to vertical motions in the 
cross-plane through J ,  and then back to the production term I,, which carries the 
primary role in maintaining the perturbation motion. 

At  higher values of R, the energy-transfer term is small compared with I,, and 
self-excitation of cross-plane motions no longer depends upon production of longitu- 
dinal energy I l .  While production I, is greater than I, for all R, at the larger Reynolds 
numbers, this serves mainly to increase the longitudinal energy and to overcome 
longitudinal dissipation. The longitudinal motion is ' slaved ', and the instability now 
depends upon I,, since it is I ,  that is responsible for the vertical perturbations 
necessary for instability. 

The eigenfunctions and the distributions of Reynolds stress, production, transfer 
and dissipation with depth are illustrated graphically in figures 27-31 for case 1.  The 
eigenfunction x for case 1 has a critical layer marked by a minimum in its modulus 
(figure 27) and a rapid change in its phase (figure 28) near z = 2.2. The Reynolds 
stress - (uw) responsible for production is, however, centred near z = 1.2, as seen 
in figure 29. The production itself is maximum (figure 30) at an even smaller value 
of z (= l ) ,  reflecting the weighting by shear U' against which the Reynolds stress 
works. This relation between the locations of the maxima of Reynolds stress and rate 
of working is typical. Figure 31 shows that the cross-plane dissipation rate exceeds 
the production at all elevations in this case, but that the transfer term is greater 
than dissipation rate over a substantial range of elevations. Since this is a neutral 
case, the sum of the areas under - R-lJ and I ,  equals the area under R-lD,. 

The eigenfunctions of the oceanic case near onset must satisfy a stress-free 
boundary condition a t  the surface z = 0, and the magnitude of the vertical motion 
is larger than that in the atmospheric case, exceeding the maximum modulus of x, 
and the depth of penetration is larger, reflecting the smaller value of the Reynolds 
number. With these exceptions, however, the shapes of the eigenfunctions are similar 
in the two cases, with x having a critical layer, and with peaks of the Reynolds 
stress-(uw), and 1, in the same relationship to the critical layer and to each other 
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FIGURE 27. Modulus of the eigenfunctions 4 and x for the atmospheric model. 
R = 30.8, ,U = 2.03, E = -go, k = 0.89. 
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FIGURE 28. Phase of the eigenfunctions 4 and x for the atmospheric model. R = 30.8, I( = 2.03, 
E = -go, k = 0.89. The eigenfunctions in this figure and in figures 2+31 are normalized to yield 
max (I+[) = 1 .  
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FIGURE 30. Production I , ,  transfer R-'J and dissipation R-ID, terms appearing in the budget of 
longitudinal kinetic energy, as functions of z for the atmospheric model. R = 30.8, p = 2.03, 
8 = -go, k = 0.89. 

FIQURE 29. Reynolds stresses -(uv), -(vw), -(uw) as functions of z for the atmospheric 
model. R = 30.8, p = 2.03, B =-go, k = 0.89. 
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FIGURE 31. Production I , ,  transfer -R-'J and dissipation R-ID, terms appearing in the budget 
of transverse kinetic energy as functions of z for the atmospheric model. R = 30.8, p = 2.03, 
E = -go, k = 0.89. 

seen for the atmospheric case. A selection of plots of these distributions, as well as others 
for the atmospheric case, may be found in Lele (1985). ' 

6. Summary 
We have shown that the horizontal component of angular velocity is important 

to the stability of a planetary Ekman layer, acting as a destabilizing agent. It lowers 
the critical Reynolds number, significantly so for flows with a rigid boundary, less 
so for flows with a free boundary, where the critical Reynolds number is already 
very small. The coupling of the energy of longitudinal disturbances to the energy 
of cross-plane disturbances is enhanced by the horizontal component, thereby 
strengthening a feedback essential to the onset of instability in Ekman layers. 

In addition to reducing the critical Reynolds number, growth rates under slightly 
supercritical conditions are larger by a significant factor, and the bands of unstable 
wavenumbers much wider, when the horizontal component of angular velocity is not 
small. In these cases, the slightly unstable system does not act as an efficient filter, 
but serves instead to amplify simultaneously a broad range of wavelengths. Thus 
waves having the greatest growth rates, and therefore preferred on linear grounds, 
may not be preferred by much under marginally supercritical conditions ; mode 
selection, if the process indeed occurs, may be expected to be dominated by 
considerations other than linear stability characteristics. 

We have also shown that a t  high Reynolds numbers (where the problem reduces 
to the traditional one treated at  some length in the literature), the instability has 
features previously undetected. One such feature, that the lower neutral curves are 
dominated by viscosity for all Reynolds numbers, had previously been discovered 
by Gill & Davey (1969) for an analogous problem, and we have given an extended 
account for the Ekman layer. 
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Another new feature is the discovery of multiple inviscid modes of instability, 
perhaps an infinite sequence of them, in the limit kR+co, the limit governed by the 
Rayleigh equation. In  addition, we have located the most-unstable inviscid modes. 
This process is aided by our demonstration that the growth rates are periodic in E 

with a period of A, and that the phase speeds of unstable modes satisfy 

We are concerned here with geophysical phenomena : these are invariably turbulent 
and usually affected by stable or unstable density stratification. It has been argued 
(see e.g. Faller 1965; Brown 1970, 1980) that coherent motions in the form 
qualitatively like the instabilities found here may be interpreted as the large eddies 
of the complete motion, and that they are the marginally unstable modes that may 
be extracted from a stability analysis of the turbulent mean flow. Such ideas of 
marginal instability appear to go back at least to Malkus (1956) and have been 
invoked by Malkus & Veronis (1958), Lessen (1978) and others. A rational method 
of identifying the ‘big eddies ’ by a ‘proper orthogonal decomposition ’ of a stochastic 
flow field has been advanced by Lumley (1967). In  its predictive mode, Lumley (1967, 
1981) has shown that, to a first approximation, the big eddies in his theory arise as 
eigenfunctions of a problem equivalent to the linear stability problem, and this 
equivalence suggests an underlying physical connection between the two concep- 
tionally distinct approaches. In  the implementations so far made of both marginal 
instability and (predictive) proper orthogonal decomposition, the effects of small 
eddies are subsumed by a (constant) eddy viscosity. 

Our assumption of a constant eddy viscosity is made in the same spirit. There are 
two effects of this choice, with consequences of different import. We believe the use 
of a constant eddy viscosity for the perturbed motion is not as serious a step as its 
use in finding the basic Ekman flow. Observed Ekman layers deviate, often 
significantly, from Ekman’s (1905) classical, constant eddy viscosity solution. The 
mean motion is determined not only by the small eddies, but also by the large ones, 
and (presumably on both counts) a constant eddy viscosity must be inadequate to 
capture the details of the mean profiles. 

Despite the use of mean flows expected to differ from Ekman layers in the 
atmosphere or ocean, we do not expect qualitative differences between the stability 
characteristics found here and those obtaining for many of the mean flows that are 
observed to occur, so long as these flows are essentially barotropic. The effects of 
stratification, ignored here, are often of major importance; this is particularly true 
at high Reynolds numbers, where Coriolis accelerations may be neglected. At lower 
Reynolds numbers, traditional treatments of the stratified problem need recon- 
sideration in light of the present findings. In  any event, the relative importance of 
the horizontal and vertical Coriolis accelerations established here is independent 
of the representation of the turbulence or the stratification conditions. 

C,(k, 6) = -c,(k,  E - A ) .  

This work was supported by the Physical Oceanography and Fluid Mechanics 
Programs of the National Science Foundation under Grants OCE8310624 and 
MEA8306713. We are indebted to Professor A. J. Faller for directing us to the works 
of Wippermann and Etling. 

Appendix 
The significant features of our numerical methods are outlined here ; further details 

of the Galerkin algorithm may be found in Lele (1985). The Galerkin scheme and its 
convergence characteristics and accuracy are documented first, with particular 
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reference to  the difficulties experienced in trying to compute eigenvalues with small 
imaginary parts. I n  this connection the differences between eigenvalues computed 
from the direct and the adjoint problems is found to  be a useful measure of the 
accuracy of the Galerkin approximation. Finally the shooting method we use in most 
of our inviscid calculations is outlined. 

Galerkin scheme 

Equation (11) defines the eigenvalue problem we wish to solve. The boundary 
conditions for the atmospheric model are given by (13) and by (14) for the oceanic 
model. I n  our calculations the boundary condition a t  infinity (or its asymptotic form) 
is applied at a finite distance z,. 

It is convenient to  transform the range of the independent variable to a (0, 1)-range 

by introducing Z 
<=- 

zm 
f or the atmospheric problem, 

or 
Z+%, 

zm 
<=- for the oceanic problem. 

I n  terms of the new independent variable <, the boundary conditions are in the 
same form as (13) or (14), but the condition a t  infinity is applied at 6 = 1 for the 
atmospheric problem. For the oceanic problem < = 1 represents the free surface, and 
the boundary condition a t  infinity is transposed to < = 0. This latter condition is 
either applied directly, or, to  improve accuracy, is replaced by approximations 
utilizing the known asymptotic behaviour a t  large 121. We briefly outline the latter 
procedure for the atmospheric problem ; the corresponding results for the oceanic 
problem can be obtained in a similar manner. As z - t c o  the coefficients in (11) 
approach constant values, and the problem has solutions in the form of exponentials. 
We take these to  be in the forms 

with $a and xa constants. The rate constant A satisfies the sixth-order algebraic 
equation 

(kR)-2 (A2-k2)3+B(ikR)-1 (V,-c) ( A 2 - k 2 ) 2  

- ( v, - C)2 (A2-  k2 )+4(kR)-2(h+ilcp)2 = 0, 

where V ,  = V ( z )  as z+m. Roots of the above equation having a positive real part 
correspond to solutions that decay as z- tco .  Of these roots the one with smallest real 
part (Amin) corresponds to the solution that decays most slowly. We construct our 
asymptotic boundary conditions using this most-slowly decaying solution in the 
following manner : 

at z = z,. 

- d X = - A .  
min X dz 

To solve for Amin we need to know the eigenvalue c, and we 
generated approximation to c. Such a process requires an iteration 

use a previously 
with successively 
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more accurate values of c. In the present problem the accuracy gained by using the 
asymptotic form of the boundary condition is only marginal provided that z, is 
sufficiently large (10-15). Furthermore, since hmin depends on c, k, p and R, a new 
set of Galerkin basis functions (discussed below) is required for each set of the 
non-dimensional parameters. This makes the numerical implementation inefficient. 
Owing to these considerations we have used the asymptotic boundary conditions only 
with a limited set of parameter values. 

The dependent variables 4 and x are expanded in a series of independent basis 
functions with unknown (complex) coefficients : 

In our calculations the basis functions are combinations of Chebyshev polynomials 
chosen so that each basis function satisfies all the relevant boundary conditions. For 
example, the basis function $, satisfying 

$,(O) = D$,(O) = 0 and $,(l) = D2$,(1) = 0 

is given by 

where TZ is the shifted Chebyshev polynomial of degree m. 
The expansions (A 1 )  and (A 2) are substituted in the transformed forms of the 

differential equations (11). Since we always have a finite set of basis functions, 
the differential equations cannot be satisfied exactly by any choice of the unknown 
coefficients a,, a2, ..., aZN. In a Galerkin method the coefficients a,, i = 1,2, ... , 2N, 
are determined by requiring the residuals to be orthogonal to each of the basis 
functions (Finlayson 1972). This procedure leads to a system of equations given by 

Aa = cBa, (A 3) 

where a is a vector with a,, a2, ..., a2N as its 2N components and A,  B are 2N x 2N 
complex matrices whose elements depend parametrically on the non-dimensional 
parameters governing the problem, viz R, k, B and p. Equation (A 3) then presents 
an algebraic eigenvalue problem for the eigenvalue c.  The eigenvalue problem (A 3) 
was solved by using a standard eigenvalue subroutine EIGZC from the International 
Mathematical and Statistical Library (IMSL) ; all calculations were performed in 
double-precision arithmetic. 

For any set of non-dimensional parameters {R, k, E ,  p} the eigenvalue problem (A 3) 
has 2N eigenvalues. These eigenvalues are sorted and numbered in decreasing order 
of their imaginary part. Let c, represent the nth eigenvalue in such an ordering. For 
any specific choice of R, k, B and p the eigenvalues c ,  depend on N (the size of the 
Galerkin approximation) and z, (the dimension of the computational domain). 
Convergence of the eigenvalucs c, to the eigenvalues of the differential equations (1  1 )  
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%n cr ci 
5 -0.349913 0.032001 9 

10 -0.353 198 0.0496970 
15 -0.353 198 0.049 8359 
20 -0.353199 0.049 841 4 

TABLE 7. Convergence study of Galerkin scheme for R = 25, k = 0.4, E = 0, ,LA = 0. Here N = 30 
and the domain of the computation is increased, eigenvalue c, is displayed. 

N 

5 
7 
9 

10 
15 
20 
30 
40 
50 

Cr 

-0.287 041 
- 0.289669 
- 0.322 624 
- 0.340 25 1 
-0.354345 
- 0.353 008 
-0.353198 
-0.353 198 
-0.353 197 

ci 

0.026 867 
0.03651 15 
0.052 8470 
0.054 9264 
0.049711 1 
0.0502229 
0.049841 3 
0.0498372 
0.0498366 

TABLE 8. Convergence study of the Galerkin scheme for the case 
shown in table 7. Here N is increased for fixed z, 

can then be studied by varying both N a n d  z,. Tables 7 and 8 summarize the results 
of such a convergence study. 

The example presented is for the oceanic problem with R = 25, k = 0.4, E = 0 and 
,u = 0. Table 7 displays the variation of the eigenvalue ci as z, is increased from 5 
to 20 with a fixed number of terms N .  It is evident that  z, of 10-15 provides a good 
approximation to the most unstable eigenvalue. Table 8 displays the variation of the 
eigenvalue c1 as the size N is increased with z, fixed a t  a value of 20. Evidently N = 30 
provides adequate accuracy. This table also demonstrates that  the real part of the 
eigenvalue converges more rapidly than its imaginary part, a feature found in all of 
our convergence studies on this scheme (and with our shooting method as well). We 
note that we found the accurate eigenvalues of the traditional Ekman-layer problem 
presented by Melander (1983) and of the plane Poiseuille flow by Orszag (1971) of 
great value in debugging our numerical codes. 

Another measure of accuracy of the computed eigenvalues is provided by comparing 
the eigenvalues with those obtained by computing the eigenvalues of the adjoint 
system of differential equations. The exact spectra of the two problems are identical, 
and hence the difference between the two numerical approximants is a measure of 
the accuracy of the approximation. With N between 25-50 and z, of 15 the numerical 
approximations to the largest eigenvalues for the two problems agree very well ; 
they differ in the 5th significant digit for Reynolds number of 4000, and in the 4th 
significant digit a t  R = 32000. This agreement deteriorates much more rapidly if we 
attempt to compute those neutral modes that become singular in limit of R +XI. This 
feature is best illustrated by a direct computation of the inviscid problem. In figure 32 
we present the results of such a calculation, together with results obtained from 
a shooting technique thought to be accurate to five significant digits. In  the range 
of wavenumbers where the eigenvalue has a significant imaginary part, the results 
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FIGURE 32. Imaginary part of the eigenvalue c1 as a function of k using different methods: -, 
shooting method; ---, Galerkin method, direct problem N = 70, z, = 10; -.--, Galerkin method, 
adjoint problem, N = 70, z, = 10. 

of all the three methods agree. As the singular neutral mode is approached (by 
increasing k) the eigenvalues obtained from the direct and adjoint problems begin 
to deviate from one another and are grossly in error at (k-kc)/kc x 0.2, where k, 
is the wavenumber corresponding to the singular neutral mode. We believe that such 
a loss of accuracy in the Galerkin scheme is due to a progressively slower convergence 
(in N) as a singular neutral mode is approached. 

Such a deterioration of the convergence rate of the Galerkin scheme has unfortunate 
practical implications. A convergence criterion based on the difference of two Galerkin 
estimates, one with Nand the other with 2N terms, will fail to signal the deterioration 
of the convergence rate (and a build-up of error) as a singular neutral mode is 
approached ; this may well mislead one into believing that accurate eigenvalues have 
been found. In such cases the role played by the adjoint eigenvalue problem is critical. 
It not only can signal build-up of errors due to loss of convergence, but is also very 
useful in eliminating other spurious eigenvalues. 

A convincing test of the accuracy of a scheme is to compare i t  with an independent 
scheme that is known to be reliable. In our work on the Rayleigh equation, we use 
a shooting technique in conjunction with the Galerkin method. This not only provides 
an independent check on the numerical results obtained from the Galerkin scheme, 
but it also allows the calculation of singular neutral modes. By analytically 
continuing the coefficients of the Rayleigh equation to the complex z-plane and by 
deforming the contour of integration around the singular points as indicated in the 
text, the shooting technique allows computation of singular neutral eigenvalues. 
Shooting methods have the disadvantage of requiring a good initial guess and 
converge to only one eigenvalue. In cases where multiple eigenvalues exist (as in the 
present problem) a shooting method is an inefficient means of conducting the search. 

The shooting method employed is similar to that used by Gill &, Davey (1969). The 
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path of integration in the complex z-plane is chosen to be either the real z-axis or 
the contour 

dV 
dz = s - pis - (8) , 

where is a positive constant. The latter path is needed when the singular neutral 
modes are approached. It is implemented (when needed) by changing the variable 
of integration from z to the real variable s, and by analytically continuing dV/dz into 
the complex z-plane, evaluating it on the deformed path. Starting from an initial guess 
found from our Galerkin program, the differential equations are integrated using a 
4th-order Rung-Kutta scheme using the asymptotic boundary condition a t  z,, viz 
d$/dz = -k$ a t  z = z,. Typically z, of 15 is adequate, although, as discussed in $4, 
larger values of z, (up to 25)  are required in order to  compute the higher modes 
accurately. 
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